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Control of chaotic spatiotemporal spiking by time-delay autosynchronization
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A global time-delayed feedback control is applied to a globally coupled reaction-diffusion system describing
charge transport in a bistable semiconductor. We demonstrate that a variety of spatiotemporal unstable periodic
orbits (UPO9 embedded in a chaotic attractor of the spatially extended system can be stabilized using an
extended time-delay autosynchronization algorithm. These UPOs correspond to spiking current filaments. We
critically evaluate analytical approximations for the limits of control originally developed for low-dimensional
temporal chaos and show that the delay time can be extrapolated with high accuracy, while the theoretical limit
for the control of UPOs in terms of the product of the period and the largest Lyapunov exponent is not reached.
If the global feedback is modified by a spatial filter, we achieve stabilization of different spatial patterns.
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I. INTRODUCTION d
gruW=allo—(u=(a)l, ey
During the last decade, the nonlinear dynamics of high-
dimensional, spatially extended systefis?] on one hand,
and the control of low-dimensional temporal chf®kon the da(x,t) _s N (92_a 2
other hand has stimulated a large amount of work. Only re- ot (au) ox2’

cently there have been attempts to combine these two issues
and thus to extend the knowledge acquired in control of low-
dimensional chaos to dynamic systems with a large number __u-a

LA ) f(auy=———-Ta
of degrees of freedom. The main difficulty arises from the (u—a)2+1
fact that the standard control techniq(ids-6] seem to work
only_ for ungtable_ perlo_dlc orbits with very f_ew un_stable di- |—|ere u(t) is the normalized voltage across the device and
rections. High dimensional systems exhibit spatiotempora

chaos yet do not normally have this property. Therefore, de<:;1(x,t) is the activator variable which represents an internal

ending on the particular svstem under consideration. a v degree of freedom like, e.g., a normalized interface charge
P g« P y . S adensity in the heterostructure hot-electron di¢p86] or the
riety of different approaches were proposed in the literatu

[7-17] r‘?/oltage drop between the cathode ar_1d pHazase layer in a

The interest in controlling chaos is due to the observatiorpnplr.'StrUCture[37]’ and Wh'ose d}l/_r;lamlcs IS gljoverned tgrthe
that small perturbations by external forcg4] or time- honlinear transport equatlpfﬂ).__ € Internal paramet
delayed feedbacs] can eliminate chaotic motion by stabi- qontrols the size of the _blstablhty range. The ratio of the
lizing one of the unstable periodic orbit§PO), which are timescales of the tvyo varlablgsanda is determined by the

g one o e p Co rametely, which is proportional to 1+ Cexp), Where

embedded in any chaotic attractor. Analytical insight into theP? ' brop Int © —exuvs .
mechanism of delayed feedback control and the optimizatiory "t and Cex are the 'T‘te”?a'. and pa'ra'llel external capaci-
of parameterg13—-17 has only recently been achieved. tances, respecnvely. F'T’a”% IS the driving current, Wh'ch
While the control of electronic circuifd 8,19, plasmag20], will be consplere_d as blfurgath_n parameter. The normalized
optical [21-23, chemical[24], and biological[25,26 sys- currept den3|tyL in the dey|ce I, 1) =u(t) —a(x.1). The
tems, for instance, has been widely studied, little work hagluantity(a)=Jg*a(x,t) dxin Eq. (1) denotes the spatial av-
been devoted to controlling current instabilities in semicon-erage ofa(x,t) over the transverse dimensiay of the de-
ductors, although these systems would offer particularly usevice (perpendicular to the current flovand represents the
ful applications if chaotic dynamics could be converted intoglobal coupling due to the integrated current density. Thus
a stable, tunable high-frequency electronic oscillator. OnlyEd. (1) is Kirchhoff's circuit equation for the total currepg
purely temporal chaos control has been analyzed theoretfomposed of the conduction current through the deyjoe
cally in the dynamic Hall effedi27] and in real-space trans- =u—(a) and the capacitive currents. Throughout this paper
fer oscillatorg28,29. It is an aim of this work to fill this gap We use dimensionless variables.
by demonstrating that chaotic spatiotemporal current density The spatially uniform fixed points of syste(#) and (2)
patterns in bistable semiconductor devices can be controllegield anS-shaped current-voltage characterigti¢u), which
by a time-delay autosynchronization method. is implicitly given by

Charge transport in various semiconductor structures with
bistable current-voltage characteristics can be modelled by a
spatially extended reaction-diffusion system of activator- U(jo)= =
inhibitor type with global coupling30], Tjo+1)

j .
© . 3
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delay autosynchronization to stabilize spatiotemporal UPOs
(Sec. l). In Sec. lll an analytical approad¢t3] will be used

to optimize the parameters that are given by the delay time
and the strengtK of the control feedback signal. In Sec. IV
we analyze the bifurcations that occur at the boundaries of
the control domain as a function Kf In Sec. V we touch the
issue of spatial filtering. Finally, we conclude by discussing
the limits of control.

Periodic Spiking Chaotic Spiking

Il. STABILIZATION OF UNSTABLE PERIODIC ORBITS

In order to stabilize UPOs of the chaotic dynamic systems
(1) and (2) we shall employ a continuous feedback as sug-
gested by Pyragakb] for ordinary differential systems to
j synchronize the current state of the system with a time-
0 delayed version of itself‘time-delay autosynchronization,”
TDAS). However, for the distributed systett) and(2) we
have not been able to obtain chaos control by simply apply-
are plotted vs the control parametgy, which is the normalized ing this feedback to the temporal variableRather, the most

driving current. The insets show the spatiotemporal evolution of theeffICIent Contro_l of the spatlotemporal dyn_amlcs is achieved
current density (x,t) = u(t) —a(x,t) and the ,(j)) phase portrait When the spatially averaged variataéx,t) is used for the

of periodic (j,=1.245) and chaotic spikingj§=1.31). Other pa- construction of the control signa(t) and when this signal is
rametersL, =40, a=0.035,7=0.05. All quantities are dimension- fed back into the same spatiotemporal variz(e,t), i.e., if

124 125 126 127 128, 6 129 13 131 132 133

FIG. 1. Bifurcation diagram of spatiotemporal spiking of current
filaments. The minima of the normalized voltagé) with u<10

less. Eq. (2) is replaced by

It describes bistability between a high-conductivity and a da(x,t) d%a

low-conductivity state in a certain range of voltagedt is It =f(a,u)+ ﬁﬁL e(t),

well known that this bistability can give rise to the bifurca-

tion of spatially inhomogeneous current density distributions (4)
in the form ofcurrent filament$31,32, i.e., the cross section e()=K [(a)(t—7)—(a)() |=K&(1),

of the current flow exhibits a region of high current density
embedded in a low-conductivity phase. Higher bifurcationswhereK is the control amplitude, and is the delay time.
have been found to lead to complex spatiotemporal dynamicllote that the feedback is a spatially homogeneous signal that
of these current filamen{83,34] and in particular, the sys- applies the same perturbation to every point of the distrib-
tem (1) and (2) displays periodic and chaotic sequences ofuted system. Nevertheless it turns out that it is capable of
spatiotemporal spiking of the current density j(x,t) stabilizing the extremely inhomogeneous spatiotemporal
[30,35,38. This is in good agreement with experiments in Sispikes representing the UPOs of the system. Physically, it
pnpndiodes[37] and other layered semiconductor structuresmay be realized by an external control circuit using a lateral
with S-shaped current-voltage characteris{igg]. gate electrode located at the active layer. Since the dimen-
Figure 1 shows a typical bifurcation diagram of spiking sionless control variablga)=u—(j) is given in terms of the
filaments fora=0.035 and7=0.05. The minima of the volt- voltage dropu and the integral currenj) through the de-
age drop across the deviuaét) are plotted versus the driving vice, i.e., electrical quantities that are easily accessible ex-
current as the bifurcation parameter. Period-doubling seperimentally, it is straightforward to implement a control cir-
quences and alternating bands of chaotic and periodic spilcuit which couples the delayed differeneét) back to the
ing can clearly be seen. The insets depict the spatiotemporkdteral gate potential. If this gate electrode is extended in the
dynamics of the current densijyx,t) and the corresponding x direction and imposes the same electrical input along the
orbits in the (1,{j)) phase plane for a typical operating point whole gate, a global coupling to the distributed variable
in the periodic {o=1.24) and the chaotig §{=1.31) regime. a(x,t) is realized. A concrete setup of such a distributed
It is the purpose of this paper to extend methods of timdateral gate structure has been described for a gate-driven
delayed feedback control which have been developed fopnpnthyristor device[39,40, and the dynamic equation for
low-dimensional systems, viz. ordinary differential equationsthe p-base potentiak including its dependence upon the
[5] and iterated map$], to the chaotic spatiotemporal spik- gate-potential has been deriveg@lote that the global cou-
ing attractor of the globally coupled reaction-diffusion sys-plings due to external circuits are used there in a different
tem introduced above. We shall demonstrate that by applyingontext, i.e., for control of the propagation of lateral current
an appropriate global feedback the UPOs corresponding tdensity fronts. Similar lateral gate configurations have also
spatio-temporal spiking can be stabilized. It should be notetheen realized experimentally in mesa-etched resonant tunnel-
that although our system of partial differential equations hasng semiconductor structures where the charge density in the
infinitely many degrees of freedom, it possesses a lowactive quantum well layer corresponding to the internal vari-
dimensional chaotic attractdse6]. ablea can be readily controlled by tuning the gate potential.
The organization of the paper is as follows. After this A natural extension of the Pyragas scheme is given by a
introduction, we shall apply the method of extended timefeedback that takes into account several previous states and
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for which the term “extended time-delay autosynchroniza- jx,h)
tion” (ETDAS) was proposed6]. Using this extension we (a)
obtain the control signal _ i

1200|

<j>
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@
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e(t)=K <1—R>mE=l R™ Y(a)(t—mr)—(a)(t)

=K{(t) 0=R<1, 5) (b) }
whereR controls the contributions of previous states; small <> @
values ofR indicate a short time memory, while larger values ] ,
0.005 0.01 X

give a stronger weight to all previous states. With increasing u i I

R orbits of higher order and orbits with larger Lyapunov

exponents are likely to be stabilizdd1,16. The caseR (C)

=0 corresponds to the simple TDAS scheme. 0.001
In our computer simulations we choose as initial condi-

tions the unstable state corresponding to the middle brancl € o

of the S-shaped current-voltage characteristic perturbed b

small inhomogeneous random fluctuationa(x),du] of -0.001

less than 1%. The bifurcation paramejgris chosen in the 0 0000 20000 30000 40000 50000 60000

regime of chaotic spikingcf. Fig. 1). The initial condition t

thus falls within the basin of the chaotic spiking attractor. (d)

We use a forward Euler algorithm with a spatial discretiza- A Ak il [ 1“\ i

tion in 25 grid points. TR ((hIOki I ‘
Figure 2 shows the stabilization of such a chaotic spiking ‘ ‘ 1

mode and elucidates the dynamics of the uncontrdlfég. | ‘

2(a)] and the controlled systefirig. 2(b)] by comparing the

phase portraits of the attractor projected onto the(j()) 0 10000 20000 30000 40000 50000 60000

phase plane, the power spectra of the volta¢®, and the t

s_patiotgmporal distribution of the Cl.Jrrem d_ensjit)(,t). The FIG. 2. Phase portrait of the attractor in twe(j)) phase plane,
simulations were performed for 1Gime units. The data of _ power spectrum ofi(t), and spatiotemporal distribution of the cur-
the last 2< 10 time units were used to plot the phase portraityent gensityj (x,t) for (a) the uncontrolled and faib) the controlled
and to compute the power spectrum. Figufe) Zllustrates  gystem. The thick trajectory in the phase portrait of the chaotic
the embedding of the UPO in the chaotic attractor by showgtractor in(a) represents the controlled UPO frafi). (c) and (d)

ing the phase portrait of both the controlled UR@ick  show the control signak(t) and the voltagei(t) vs time, respec-
curve) and the uncontrolled system. The delay time is equatively. Control is switched on at=7000. Parameterg,=1.302,

to the period of the stabilized periodic orbit. The large loopr=732.4, K=0.000548,R=0.2, N=8. The other numerical pa-
in the phase plane corresponds to the localized spike of themeters are as in Fig. 1.

current density (x,t) while the smaller loop reflects the uni-

form small-amplitude relaxation oscillation in between two UPO by, 7, and,, respectively, we find that the periods
spikes; note that altogether it represents a period-one orbibf higher orderr, and 7, are not exact integer multiples of
We have used a slightly modified ETDAS algorithm by trun- 7, but there is a discrepancy of about 1% betwaen and
cating the series in E@5) for m>N; the memory thus com- 7. This deviation is significant since control fails fap
prises theN previous states at timés- 7,t—27, ... t—=N7, =27, or 7,=47, however one adjusts the coupling constant
and neglects further states in the p&s$is chosen such that K.

RN is smaller than 10°. Thus with increasindRk more pre-

j(x.t)

2000

e

plitude

1000]

relative am

o
o

vious states have to be taken into account.
; . . [ll. OPTIMIZATION OF CONTROL PARAMETERS
Figures 2c) and 2d) show the time series of the control
signal e(t) and the dynamic variablei(t). Control is By continuous variation ofr and K and simultaneous

switched on att=7000. After about 20 UPO periods the monitoring of the control signad(t) =K &(t) the control pa-
control signal vanishes and the chaotic oscillationsuf) rametersr andK can be adjusted to their optimal valués.
become periodic. A satisfactory stabilization is achieved when the control sig-
Stabilization of periods of higher order is shown in Fig. 3. nal becomes negligibly small after some transient time.
For a fixed bifurcation parametgg the unstable period-one, Therefore, we compute the temporally averaged asymptotic
period-two, and period-four orbits can be stabilized with acontrol signak|¢|); for each simulation. We proceed accord-
subsequently increasing memory amplitiRlaVe have been ing to the following steps. First, the delay timés varied for
able to achieve control of the period-1 orbit wi 0, while  a fixed value of the estimated control amplitudelf K is
higher orbits(>2) requireR#0. In Figs. 3b) and 3c) the  chosen in the right order of magnitudéé|), as a function of
additional frequency peaks at 1/2 and 1/4 of the fundamentat exhibits sharp resonant minima as depicted in Fig. 4; the
frequency can be seen in the power spectra, especially in thgositions of the minima indicate the unknown peridgsof
higher harmonics. Denoting the periods of the controlledthe UPOs[5]. Next, 7 is fixed to one of these UPO reso-
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o A X FIG. 3. Stabilized periodic at-
a0 HES 0 0004 0008 0012 93000 4 {55000 tractors in theu,(j)) phase plane,

f power spectrum ofi(t), and spa-
tiotemporal distribution of the cur-
rent densityj(x,t) for the con-
trolled system with the bifurcation
parametejj,=1.262:(a) period-1,
(b) period-2, and(c) period-4 or-
bit. Control parameters: (a)
TDAS: 7=985.9, K=0.000513,
(b) ETDAS: 7=1949.2, K
=0.000312,R=0.1, N=6, (¢)
ETDAS: 7=3909.5, K
=0.000288,R=0.2, N=10. The
other numerical parameters are as
in Fig. 1.
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nances, an is optimized. Generally, the control signal control force and is unknown, as is the UPO periodt is
vanishes in a finite control domain &f-values(Fig. 5. In  therefore sufficient to determiri for two sets of parameters
Fig. 5 we have also plotted the largest nonzero LyapunoK,r. ThenT and x can be computed from the system of two
exponent\ which is positive for the uncontrolled chaotic nonlinear Eqs(6) using Newton’s method. In the next itera-
attractor K=0) and negative in case of successful stabiliza-tion we use the computed approximationTos new delayr
tion of the UPO. An optimum value f is indicated by a in the subsequent simulation. Again we expect the system to
minimum Lyapunov exponent. Note, however, that a negasynchronize with a new perio@. Using this set of data and
tive Lyapunov exponent alone is not sufficient for successfuthe better of the two initial guesses we can again solve the
control of a UPO since it might also be due to an artificially system(6) and thus obtain a better approximationTofThe
induced limit cycle which exists only with a nonvanishing algorithm therefore opens up the possibility of a recursive
control signal as, e.g., shown in Fig. 5 for tkerange above approximation of the unknown UPO peridd We have ap-
Kmax- It is the result of unintentional synchronization of the plied the above procedure to our system exhibiting spa-
system with the control signal giving rise to a limit cycle of tiotemporal chaos. For the bifurcation paramege 1.262
period ®# r that is not a UPO of the chaotic attractor. (cf. Figs. 4 and § K=0.0006 and initial guesses of the
By iterating the procedure described above an optimalinknown periodr{®’=500 and7{”’=1200 we have deter-
choice of bothr andK can be obtained although this may be mined® and numerically solved Eq6) for T(*). After only
quite cumbersome due to the extremely sharp resonances in

7. Empirical schemes to improve the estimate of the delay 0.8
time by a self-adaptive control have been suggested for spe- 0.7
cial caseqd42]. A very promising technique to extrapolate 0.6
the unknown UPO period on the basis of repeated appli- <El>

cation of an analytical approximation formula was recently

proposed for chaos control in ordinary differential equations 04
by Justet al.[14]. If the delay timer and the UPO period 0.3
do not coincide the system responds with a periodic signal of 0.2
period ® for not too large delay mismatch. An expansion in 0.1

terms of the delay mismatch—T yields
0 2000 4000 6000 8000 10000

T

FIG. 4. Mean asymptotic control signél¢|); as a function of
the delay timer for j,=1.262 and fixed = 0.000 479 TDAS). For
depends on the control parametérsr and on a system each value of-the control signalé| has been averaged over the last
parameterx and obeys the constrai®(K,7=T)=T. The 20000 time steps of a simulation 0&2L0° time units. The other
parameterx comprises all details about the coupling of the numerical parameters are as in Fig. 1.

OK,7)=T+ (r—T)+0O(r—T)?). (6)

K-«
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K
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(a) (b)
K min K max . .
FIG. 6. Same as Fig. 5 foj,=1.302, 7=732.4,R=0.2, N
FIG. 5. Largest nonzero Lyapunov exponangsolid line) and =8. The following values oK are marked:(a) Period doubling

mean asymptotic control signél£]), (dotted ling as a function of  bifurcation (flip instability), (b) optimal UPO control(c) Hopf in-

the control amplitud& for j,=1.262 and fixedr=985.9(TDAS). stability (torug, (d) onset of chaos. For each valuekthe control

Optimal control K, is achieved when the control signal vanishes signal |¢| has been averaged over the last 20000 time steps of a

and A (K) reaches its minimumk,;, and K, mark the bound-  simulation of 2< 10° time units.

aries of the domain of control. For each value Kfthe control

signal |¢| has been averaged over the last 20 000 time steps of gespect toK. For small values oK we find chaotic behavior

simulation of 2<1C° time units. The other numerical parameters characterized by a positive Lyapunov exponent and a nonva-

are as in Fig. 1. nishing control signal, as expected for too weak control. As
we increaseK, an inverse period doubling cascade sets in

four simulations with different values of and three itera- which finally leads to the stabilized UPO in the domain of

tions of Eq.(6) we obtain the UPO period®~983.2. In  control [point (a)]. At each period doubling bifurcation the

spite of the large initial delay mismatch this result is in ex-Lyapunov exponent vanishd43]. In the period doubling

cellent agreement with the true UPO peride-985.9 (the  regime the control signal remains positive. Within the do-

relative deviation is less than 0.3%nd is reproducible for main of control optimal stabilization is achieved &t

even worse initial guesses and other valueg,ofThis indi- = Kopt, Where the negative Lyapunov exponentK) is

cates that the algorithm is very robust and efficient not onlyminimum [point (b)]. Further increase ok leads to a Hopf

for purely temporal chaos but also for high-dimensional sysbifurcation associated with a rise of the control sigfidl ),

tems. to slightly positive values at the upper boundary of the con-
trol domain[point (c)] followed by a sharp increase as chaos

IV. BIFURCATIONS AT THE BOUNDARY sets or{pomt_(d)]. T_he Lyapunov exponent becomes zero
OF THE DOMAIN OF CONTROL at the Hopf bifurcation as a signature of the two-torus, which

possesses two vanishing Lyapunov exponéntse that a

Once we have adjusted the delay timéo the UPO pe- second Lyapunov exponent is zero throughout the whole
riod T we can vary the control amplitud€in a whole inter-  range ofK), and jumps to positive values only as chaos oc-
val (Knnin,Kmax and still achieve control of the UPO. This curs. For very large control amplitude the controlled variable
domain of control is characterized by a vanishing controla is driven too hard and decouples from the other variable,
signal (and thus by(|£|);=0) and by a negative Lyapunov therefore the control of UPOs fails.
exponent\(K) (Fig. 5. At the lower boundary of this Figure 7 presents simulations for the poifas-(d) of Fig.
K-domain the stabilized orbit decays via a period doubling6. Figures Ta) and 7c) correspond approximately to the
bifurcation (“flip instability” corresponding to a torsion of respective bifurcation points, while Fig(bJ represents the
nearby orbits bys during one cyclg while at the upper stabilized reference UPO #&=K,, and Fig. 7d) shows
boundary a Hopf bifurcation occuf46,15. The Hopf bifur-  the onset of chaos just above the Hopf bifurcation. The
cation adds an incommensurate frequency to the stabilizegower spectra in Figs.(@ and 7c) clearly reveal the ap-
UPO limit cycle and thus gives rise to a two-torus precedingpearance of the subharmonic frequency and the higher in-
the onset of chaos via quasiperiodicity. commensurate frequency associated with period doubling

Figure 6 presents an overview of the bifurcations withand Hopf bifurcation, respectivelynarked by arrows The
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FIG. 7. Control signak(t), phase portraitéu,(j)), and power spectrum af(t) for different values of the control amplitudé marked
in Fig. 6.(a) Period-doublindflip instability) at the lower boundary of the control regingb) reference UPO at optimuit=K;, (c) Hopf
instability at the upper boundary of the control regirttd,onset of chaos beyond the Hopf bifurcation via intermittency: quasiperiblick
lines) and chaotidgray lines spiking oscillations alternate. The arrows(a and(c) indicate the additional frequencies with respectip
Parametersj,=1.302, 7=732.4,R=0.2, N=8, (a) K=0.000 54,(b) K=0.000 56,(c) K=0.000 834,d) K=0.000 838.

onset of chaos in Fig. (d shows intermittent behavior V. PATTERN SELECTION BY SPATIAL FILTERING
where the dynamics seems to oscillate between the two-torus Up to now we have only considered a spatially homoge-
228atrg?e|§/hi?10:rllz 3t;§scéogbr?r(;? aiﬁn%ﬂfesgztﬁzrzrpeeg&t:ﬁg\eoqs feedbaqk(t) at every point of the distributed system.
i X The idea of using a spatially inhomogeneous feedback arises
For different parameterf, we have also observed more ., the opservation that in the uncontrolled system there
complex bifurcation scenarios. In Fig. 5, e.g., the Hopf bi-

S ) "exist various locally stable or even unstable spatially inho-
furcation is concealed by a regime where a synchronizeg,,geneous modes, e.g., spiking current filaments located in

limit cycle (negative Lyapunov exponeris enforced by the  the center of the sample, but these are only observed for
control ((|[);#0). A closer inspection shows that at least in gpecial initial conditions. Note that in the absence of control
some range oK>K,,, bistability between the forced limit g random initial distribution always gives rise tdspiking
cycle and a controlled UPO occurs, depending upon the inifilament, which is pinned to the boundafgf., e.g., Fig.

tial conditions. This can be understood by noting that the8(a)]; this dominant spatial mode results from the attraction
basin of attraction of the controlled UPO becomes smaller asxerted upon filaments by Neumann boundary conditions
the boundaries of the control domain are approached. [44]. By tailoring appropriate spatiotemporal control signals
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(a) (b) (c)
‘ j(x,1) FIG. 8. Suppression of the dominant spatial
. . 4 mode in favor of an unstable one by spatial fil-
j(X,t) ](x,t) tering. In (a)—(c) the spatiotemporal distribution

of the current density(x,t) is plotted for differ-
ent time regimes(a) Asymmetric spiking fila-
ment at the boundary, induced by random initial
44000 { 6000 conditions.(b) Transient regime of coexistence of
both spiking modes after control is switched on at
t=2000. (c) Symmetric spiking mode prevails
over the asymmetric one and forms the
asymptotic pattern(d) Control signale(t), (e)
phase portrait of the stabilized limit cycle corre-
sponding to (c). Parameters:j,=1.262, K
=0.0002,R=0, 7=985.5, asymptotic period of
the response sign& =778.3. The other numeri-
0 20000 40000 10 11 cal parameters are as in Fig. 1.

t

(d)

0.0002

g(t) o

-0.0002

e(x,t) which resemble the spatial profile of the desired VI. DISCUSSION
modes one can expect to stabilize some of them from ran-
dom initial conditions. Thus, chaos control in spatiotempora
systems could be used for pattern selection that opens
promising applications as distributed semiconductor memo
devices and neural networks.

We illustrate this idea for a spatial modéx,t) whose 14R
profile is symmetric and exhibits a pe&pike at the center Nr<2 — . (8)
of the sample. This mode is unstable and can only be ob- 1-R
served if the initial distribution of (x,t) is perfectly sym-
metric and the system is noise-free. In order to stabilize thid hus, the simple TDAS schemd&{0) is expected to be
Symmetric Sp|k|ng mode we app'y a Spa“a“y modu'atedable to Stabilize UPOS Whose pI’OdUCt Of the Lyapu.nOV ex-
control signale;,om(X,t), Which favors the considered sym- Ponenti and the periodr does not exceed 2. In practice we

metry and can be constructed from the homogeneous contrBAve been able to control UPOs in our spatially extended
signal e(t) in the following way: system with global feedback only for lower values.

Empirically we found that both TDAS and ETDAS work

) successfully for UPOs witih7=<1.2. If on the other hand
a

L_XX)

| A rough estimate of the efficiency of the ETDAS scheme
for temporal chaos in ordinary differential equations has
r%)een given by Judt16,15: Only those UPOs can be stabi-
Yized that obey the constraint

N7>1.2, the TDAS scheme starts to fail while ETDAS still

works successfully if the Lyapunov exponent of the uncon-
(7)  trolled system is not too large. The best results we obtained
. were the stabilization of a high period UPO with a small

e=K[a)t-n—(a)b]. Lyapunov exponent for jo=1.262 (\=4.8x10 %,
7=3909.5 and thusa.7~1.9) and of a highly unstable UPO

Figure 8 shows the results of a simulation with this spatiallyfor j,=1.305 A =2.58x 10" 3,7=730.3\ 7~1.9). Both or-
inhomogeneous feedback control. For random initial condibits could only be controlled with ETDAS.
tions the dominant spatial mode is always given by a chaoti- In parameter regions where the largest Lyapunov expo-
cally spiking profile j(x,t) with the spike located at the nent is greater than 2:410°3 (i.e., 1.309<j,<1.314) we
boundary{Fig. 8@)]. After control is switched on, there is a have not been able to stabilize any UPO at all, although
transition period in which the dominant modfavored by we extrapolate periods of the order o700, and(if the
the boundary conditionsoexists with the symmetric mode Lyapunov exponent of the UPO and of the uncontrolled sys-
(favored by the control signg[Fig. 8b)]. Finally the sym- tem do not differ significantlyA7<2 would still hold. This
metric mode wins and the corresponding orbit is stabilizedcould possibly be improved by making use of a technique
asymptotically[Fig. 8c)]. The phase portrait in Fig.(§  developed by Zoldi to calculate UPOs explicitly using a
suggests that the controlled orbit is periodic though not alamped-Newton metho5]. We suggest that it might be
UPO of the chaotic attractor since the control sigaé) possible to stabilize some of these UPOs by means of more
does not vanish after some transient tifég. 8(d)]. Thus,  sophisticated control techniques, e.g., with a spatially filtered
the period of the stabilized limit cycl® does not coincide control signal.
with the delay timer. Nevertheless, we stress that by means Figure 9 summarizes our empirical findings for different
of a weak perturbation we have succeeded in suppressing tivalues of\ and by showing the domains of control in the
dominantspatial mode in favor of an unstable one and to diagram of(|£|); as a function ofK for different ETDAS
replace theemporallychaotic sequence of spikes by a peri- realizations. The control domain comprises all valueKof
odic sequence. for which (|¢|); vanishes. In Fig. @), e.g., we havex

1 1
— 5 cos

€inhom(X,1) = €(t)
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the TDAS schemeR=0), while the ETDAS scheme with
(a) o R=0.2 R>0 still works, although large fluctuations i}¢|); are
' present. They are a result of the shrinking attractor basin

which prevents stabilization for some realizations of the ran-

dom initial conditions, even though fé&t=0.2, e.g., the the-
<| |>0-1 R=0.1 oretical limit of \7=3 is by far not reached. In Fig(® we
E_; t ) e consider a UPO withh7~1.4 for a different bifurcation pa-

rameter jo; here the Lyapunov exponent is largek (
=1.88x10 ) and the simple TDAS scheme does not allow
R=0 stabilization even of the period-1 UPO. On the other hand
there is still a large control domain for the feedback schemes
0.0003 K 0.0004 0.0005 with longer memory R>0), and the small shift of the lower
stability boundary(flip instability) and the stronger shift of

04 R=0. the upper stability boundar§Hopf instability) with increas-
(b) ' ing R agrees well with the theoretical predictiofis].

02 In conclusion, we have been able to demonstrate that a
variety of spatiotemporal UPOs embedded in a chaotic at-
tractor of a distributed system can be stabilized using an
extended time-delay autosynchronization algorithm. These
UPOs correspond to spiking current filaments. We have criti-
cally evaluated numerical techniques and analytical approxi-
mations originally developed faemporalchaos 14,16 and
found that a number of properties of chaos control in low-
dimensional temporal systems carry over to $phatiotempo-
rally chaotic reaction-diffusion system. We have confirmed
K that the delay time of global time-delayed feedback control
(which is adjusted to the UPO peridd can be extrapolated

R=0.4 with high accuracy from the periodic response of the system.
(C) 0.5 e \ We have also gained insight into the mechanism of spa-

0.1

0.4
<|§|>to.2

0.4

0.2

0.00025 0.0003 0.00035 0.0004

il

0 R=0.3 tiotemporal chaos control by analyzing the bifurcations at the

05 boundaries of the control domain. While the gross features
<|§|> 0 agree with the case of temporal chaos, we have found a
t higher sensitivity to noise which appears to be due to smaller

0-5""“’""_ W attractor basins and multistability of the spatiotemporal pat-

0 terns associated with the larger number of degrees of free-
0.5 WWW dom. The theoretical limit for the control of temporal UPOs,
which is given bya7<2 for the Pyragas feedback, and by

00,0002 0.0004 0.0006 0.0008 0.001 00012 00014  A7<2(1+R)/(1—R) for the extended time-delay autosyn-
K chronization scheme, has not been reached in our simula-
tions. Further analytical and numerical work is necessary to
FIG. 9. Domains of control for different values afr andR.  explore the limits of control for spatiotemporal systems.
UPO stabilization is achieved if the mean control sigfidl), van-  Nevertheless, the ETDAS scheme represents a significant
ishes in some interval oK. (a) jo=1.262, 7=1949.9 (period-2, improvement of the simple Pyragas feedback. If the global
At~1.2. (b) jo=1.262, 7=3909.5 (period-4, A7=~1.9 (c) jo  feedback is modified by a spatial filter, we can achieve pat-
=1.302, 7=732.4 (period-), N7~1.4. For each value oK the tern selection and stabilization of otherwise unstable spatial
control signall| has been averaged over the last 20 000 time stepmnodes corresponding to different locations of the spikes
of a simulation of 2<10° time units. The other numerical param- \ithin the sample.
eters are as in Fig. 1. Our findings offer promising potential applications since
—6.2x107%, 7=1949.2 for the period-2 UPO, and this the feedbacl_< can be readily realized for our di§tributed
~1.2. For this uncritical value ofr both the TDAS R _blstable semlconquctor system by gate control circuits. Thus,
—0) and the ETDAS R>0) scheme work in a finite it should be possible to build stable, tunable microwave os-

K-interval, as is evident from the vanishing control signal. ItCIIIatorS on that principle.
should be noted that with increasiiRgthe control domain is
shifted to larger values oK and becomes wider, in good
agreement with the theoretical predictions for temporal chaos We are grateful to S. Zoldi, W. Just, and J.C. Claussen for
[16]. For the period-4 UPO at the same valuejgf[Fig.  enlightening discussions. This work was partially supported
9(b)] A7~1.9, and control has no longer been achieved byby the DFG in the framework of SFB 555.
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