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Control of chaotic spatiotemporal spiking by time-delay autosynchronization

G. Franceschini, S. Bose, and E. Scho¨ll
Institut für Theoretische Physik, Technische Universita¨t Berlin, Hardenbergstraße 36, D-10623 Berlin, Germany

~Received 7 April 1999!

A global time-delayed feedback control is applied to a globally coupled reaction-diffusion system describing
charge transport in a bistable semiconductor. We demonstrate that a variety of spatiotemporal unstable periodic
orbits ~UPOs! embedded in a chaotic attractor of the spatially extended system can be stabilized using an
extended time-delay autosynchronization algorithm. These UPOs correspond to spiking current filaments. We
critically evaluate analytical approximations for the limits of control originally developed for low-dimensional
temporal chaos and show that the delay time can be extrapolated with high accuracy, while the theoretical limit
for the control of UPOs in terms of the product of the period and the largest Lyapunov exponent is not reached.
If the global feedback is modified by a spatial filter, we achieve stabilization of different spatial patterns.
@S1063-651X~99!07911-8#

PACS number~s!: 05.45.2a, 05.70.Ln, 72.20.Ht
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I. INTRODUCTION

During the last decade, the nonlinear dynamics of hi
dimensional, spatially extended systems@1,2# on one hand,
and the control of low-dimensional temporal chaos@3# on the
other hand has stimulated a large amount of work. Only
cently there have been attempts to combine these two is
and thus to extend the knowledge acquired in control of lo
dimensional chaos to dynamic systems with a large num
of degrees of freedom. The main difficulty arises from t
fact that the standard control techniques@4–6# seem to work
only for unstable periodic orbits with very few unstable d
rections. High dimensional systems exhibit spatiotempo
chaos yet do not normally have this property. Therefore,
pending on the particular system under consideration, a
riety of different approaches were proposed in the literat
@7–12#.

The interest in controlling chaos is due to the observat
that small perturbations by external forces@4# or time-
delayed feedback@5# can eliminate chaotic motion by stab
lizing one of the unstable periodic orbits~UPO!, which are
embedded in any chaotic attractor. Analytical insight into
mechanism of delayed feedback control and the optimiza
of parameters@13–17# has only recently been achieve
While the control of electronic circuits@18,19#, plasmas@20#,
optical @21–23#, chemical@24#, and biological@25,26# sys-
tems, for instance, has been widely studied, little work h
been devoted to controlling current instabilities in semico
ductors, although these systems would offer particularly u
ful applications if chaotic dynamics could be converted in
a stable, tunable high-frequency electronic oscillator. O
purely temporal chaos control has been analyzed theo
cally in the dynamic Hall effect@27# and in real-space trans
fer oscillators@28,29#. It is an aim of this work to fill this gap
by demonstrating that chaotic spatiotemporal current den
patterns in bistable semiconductor devices can be contro
by a time-delay autosynchronization method.

Charge transport in various semiconductor structures w
bistable current-voltage characteristics can be modelled
spatially extended reaction-diffusion system of activat
inhibitor type with global coupling@30#,
PRE 601063-651X/99/60~5!/5426~9!/$15.00
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dt
u~ t !5a @~ j 02~u2^a&!#, ~1!

]a~x,t !

]t
5 f ~a,u!1

]2a

]x2
, ~2!

f ~a,u![
u2a

~u2a!211
2Ta.

Here u(t) is the normalized voltage across the device a
a(x,t) is the activator variable which represents an inter
degree of freedom like, e.g., a normalized interface cha
density in the heterostructure hot-electron diode@30# or the
voltage drop between the cathode and thep-base layer in a
pnpnstructure@37#, and whose dynamics is governed by t
nonlinear transport equation~2!. The internal parameterT
controls the size of the bistability range. The ratio of t
timescales of the two variablesu anda is determined by the
parametera, which is proportional to 1/(Cint1Cext), where
Cint and Cext are the internal and parallel external capa
tances, respectively. Finally,j 0 is the driving current, which
will be considered as bifurcation parameter. The normaliz
current density in the device isj (x,t)5u(t)2a(x,t). The
quantity^a&5*0

Lxa(x,t) dx in Eq. ~1! denotes the spatial av
erage ofa(x,t) over the transverse dimensionLx of the de-
vice ~perpendicular to the current flow! and represents the
global coupling due to the integrated current density. Th
Eq. ~1! is Kirchhoff’s circuit equation for the total currentj 0
composed of the conduction current through the device^ j &
5u2^a& and the capacitive currents. Throughout this pa
we use dimensionless variables.

The spatially uniform fixed points of system~1! and ~2!
yield anS-shaped current-voltage characteristicj 0(u), which
is implicitly given by

u~ j 0!5
j 0

T~ j 0
211!

1 j 0 . ~3!
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It describes bistability between a high-conductivity and
low-conductivity state in a certain range of voltagesu. It is
well known that this bistability can give rise to the bifurc
tion of spatially inhomogeneous current density distributio
in the form ofcurrent filaments@31,32#, i.e., the cross section
of the current flow exhibits a region of high current dens
embedded in a low-conductivity phase. Higher bifurcatio
have been found to lead to complex spatiotemporal dynam
of these current filaments@33,34# and in particular, the sys
tem ~1! and ~2! displays periodic and chaotic sequences
spatiotemporal spiking of the current density j (x,t)
@30,35,36#. This is in good agreement with experiments in
pnpndiodes@37# and other layered semiconductor structu
with S-shaped current-voltage characteristics@38#.

Figure 1 shows a typical bifurcation diagram of spikin
filaments fora50.035 andT50.05. The minima of the volt-
age drop across the deviceu(t) are plotted versus the drivin
current as the bifurcation parameter. Period-doubling
quences and alternating bands of chaotic and periodic s
ing can clearly be seen. The insets depict the spatiotemp
dynamics of the current densityj (x,t) and the corresponding
orbits in the (u,^ j &) phase plane for a typical operating poi
in the periodic (j 051.24) and the chaotic (j 051.31) regime.

It is the purpose of this paper to extend methods of ti
delayed feedback control which have been developed
low-dimensional systems, viz. ordinary differential equatio
@5# and iterated maps@6#, to the chaotic spatiotemporal spik
ing attractor of the globally coupled reaction-diffusion sy
tem introduced above. We shall demonstrate that by apply
an appropriate global feedback the UPOs correspondin
spatio-temporal spiking can be stabilized. It should be no
that although our system of partial differential equations
infinitely many degrees of freedom, it possesses a lo
dimensional chaotic attractor@36#.

The organization of the paper is as follows. After th
introduction, we shall apply the method of extended tim

FIG. 1. Bifurcation diagram of spatiotemporal spiking of curre
filaments. The minima of the normalized voltageu(t) with u,10
are plotted vs the control parameterj 0 , which is the normalized
driving current. The insets show the spatiotemporal evolution of
current densityj (x,t)5u(t)2a(x,t) and the (u,^ j &) phase portrait
of periodic (j 051.245) and chaotic spiking (j 051.31). Other pa-
rameters:Lx540, a50.035,T50.05. All quantities are dimension
less.
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delay autosynchronization to stabilize spatiotemporal UP
~Sec. II!. In Sec. III an analytical approach@13# will be used
to optimize the parameters that are given by the delay timt
and the strengthK of the control feedback signal. In Sec. I
we analyze the bifurcations that occur at the boundaries
the control domain as a function ofK. In Sec. V we touch the
issue of spatial filtering. Finally, we conclude by discussi
the limits of control.

II. STABILIZATION OF UNSTABLE PERIODIC ORBITS

In order to stabilize UPOs of the chaotic dynamic syste
~1! and ~2! we shall employ a continuous feedback as su
gested by Pyragas@5# for ordinary differential systems to
synchronize the current state of the system with a tim
delayed version of itself~‘‘time-delay autosynchronization,’’
TDAS!. However, for the distributed system~1! and ~2! we
have not been able to obtain chaos control by simply app
ing this feedback to the temporal variableu. Rather, the most
efficient control of the spatiotemporal dynamics is achiev
when the spatially averaged variablea(x,t) is used for the
construction of the control signale(t) and when this signal is
fed back into the same spatiotemporal variablea(x,t), i.e., if
Eq. ~2! is replaced by

]a~x,t !

]t
5 f ~a,u!1

]2a

]x2
1e~ t !,

~4!

e~ t ![K @^a&~ t2t!2^a&~ t !#[Kj~ t !,

whereK is the control amplitude, andt is the delay time.
Note that the feedback is a spatially homogeneous signal
applies the same perturbation to every point of the dist
uted system. Nevertheless it turns out that it is capable
stabilizing the extremely inhomogeneous spatiotempo
spikes representing the UPOs of the system. Physically
may be realized by an external control circuit using a late
gate electrode located at the active layer. Since the dim
sionless control variablêa&5u2^ j & is given in terms of the
voltage dropu and the integral current̂j & through the de-
vice, i.e., electrical quantities that are easily accessible
perimentally, it is straightforward to implement a control c
cuit which couples the delayed differencee(t) back to the
lateral gate potential. If this gate electrode is extended in
x direction and imposes the same electrical input along
whole gate, a global coupling to the distributed variab
a(x,t) is realized. A concrete setup of such a distribut
lateral gate structure has been described for a gate-dr
pnpn thyristor device@39,40#, and the dynamic equation fo
the p-base potentiala including its dependence upon th
gate-potential has been derived.~Note that the global cou-
plings due to external circuits are used there in a differ
context, i.e., for control of the propagation of lateral curre
density fronts.! Similar lateral gate configurations have al
been realized experimentally in mesa-etched resonant tun
ing semiconductor structures where the charge density in
active quantum well layer corresponding to the internal va
ablea can be readily controlled by tuning the gate potenti

A natural extension of the Pyragas scheme is given b
feedback that takes into account several previous states

t

e
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5428 PRE 60G. FRANCESCHINI, S. BOSE, AND E. SCHO¨ LL
for which the term ‘‘extended time-delay autosynchroniz
tion’’ ~ETDAS! was proposed@6#. Using this extension we
obtain the control signal

e~ t !5K S ~12R! (
m51

`

Rm21^a&~ t2mt!2^a&~ t !D
[Kj~ t ! 0<R,1, ~5!

whereR controls the contributions of previous states; sm
values ofR indicate a short time memory, while larger valu
give a stronger weight to all previous states. With increas
R orbits of higher order and orbits with larger Lyapuno
exponents are likely to be stabilized@41,16#. The caseR
50 corresponds to the simple TDAS scheme.

In our computer simulations we choose as initial con
tions the unstable state corresponding to the middle bra
of the S-shaped current-voltage characteristic perturbed
small inhomogeneous random fluctuations@da(x),du# of
less than 1%. The bifurcation parameterj 0 is chosen in the
regime of chaotic spiking~cf. Fig. 1!. The initial condition
thus falls within the basin of the chaotic spiking attract
We use a forward Euler algorithm with a spatial discretiz
tion in 25 grid points.

Figure 2 shows the stabilization of such a chaotic spik
mode and elucidates the dynamics of the uncontrolled@Fig.
2~a!# and the controlled system@Fig. 2~b!# by comparing the
phase portraits of the attractor projected onto the (u,^ j &)
phase plane, the power spectra of the voltageu(t), and the
spatiotemporal distribution of the current densityj (x,t). The
simulations were performed for 105 time units. The data of
the last 23104 time units were used to plot the phase portr
and to compute the power spectrum. Figure 2~a! illustrates
the embedding of the UPO in the chaotic attractor by sho
ing the phase portrait of both the controlled UPO~thick
curve! and the uncontrolled system. The delay time is eq
to the period of the stabilized periodic orbit. The large lo
in the phase plane corresponds to the localized spike of
current densityj (x,t) while the smaller loop reflects the un
form small-amplitude relaxation oscillation in between tw
spikes; note that altogether it represents a period-one o
We have used a slightly modified ETDAS algorithm by tru
cating the series in Eq.~5! for m.N; the memory thus com
prises theN previous states at timest2t,t22t, . . . ,t2Nt,
and neglects further states in the past.N is chosen such tha
RN is smaller than 1026 . Thus with increasingR more pre-
vious states have to be taken into account.

Figures 2~c! and 2~d! show the time series of the contro
signal e(t) and the dynamic variableu(t). Control is
switched on att57000. After about 20 UPO periods th
control signal vanishes and the chaotic oscillations ofu(t)
become periodic.

Stabilization of periods of higher order is shown in Fig.
For a fixed bifurcation parameterj 0 the unstable period-one
period-two, and period-four orbits can be stabilized with
subsequently increasing memory amplitudeR. We have been
able to achieve control of the period-1 orbit withR50, while
higher orbits~.2! requireRÞ0. In Figs. 3~b! and 3~c! the
additional frequency peaks at 1/2 and 1/4 of the fundame
frequency can be seen in the power spectra, especially in
higher harmonics. Denoting the periods of the control
-
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UPO byt1 , t2, andt4, respectively, we find that the period
of higher ordert2 andt4 are not exact integer multiples o
t1, but there is a discrepancy of about 1% betweennt1 and
tn . This deviation is significant since control fails fort2
52t1 or t454t1 however one adjusts the coupling consta
K.

III. OPTIMIZATION OF CONTROL PARAMETERS

By continuous variation oft and K and simultaneous
monitoring of the control signale(t)5Kj(t) the control pa-
rameterst andK can be adjusted to their optimal values@5#.
A satisfactory stabilization is achieved when the control s
nal becomes negligibly small after some transient tim
Therefore, we compute the temporally averaged asympt
control signal̂ uju& t for each simulation. We proceed accor
ing to the following steps. First, the delay timet is varied for
a fixed value of the estimated control amplitudeK. If K is
chosen in the right order of magnitude,^uju& t as a function of
t exhibits sharp resonant minima as depicted in Fig. 4;
positions of the minima indicate the unknown periodsTi of
the UPOs@5#. Next, t is fixed to one of these UPO reso

FIG. 2. Phase portrait of the attractor in the~u, ^ j &) phase plane,
power spectrum ofu(t), and spatiotemporal distribution of the cu
rent densityj (x,t) for ~a! the uncontrolled and for~b! the controlled
system. The thick trajectory in the phase portrait of the chao
attractor in~a! represents the controlled UPO from~b!. ~c! and ~d!
show the control signale(t) and the voltageu(t) vs time, respec-
tively. Control is switched on att57000. Parameters:j 051.302,
t5732.4, K50.000 548,R50.2, N58. The other numerical pa
rameters are as in Fig. 1.
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FIG. 3. Stabilized periodic at-
tractors in the~u,^ j &) phase plane,
power spectrum ofu(t), and spa-
tiotemporal distribution of the cur-
rent density j (x,t) for the con-
trolled system with the bifurcation
parameterj 051.262:~a! period-1,
~b! period-2, and~c! period-4 or-
bit. Control parameters: ~a!
TDAS: t5985.9, K50.000 513,
~b! ETDAS: t51949.2, K
50.000 312, R50.1, N56, ~c!
ETDAS: t53909.5, K
50.000 288,R50.2, N510. The
other numerical parameters are
in Fig. 1.
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nances, andK is optimized. Generally, the control sign
vanishes in a finite control domain ofK-values~Fig. 5!. In
Fig. 5 we have also plotted the largest nonzero Lyapu
exponentl which is positive for the uncontrolled chaot
attractor (K50) and negative in case of successful stabili
tion of the UPO. An optimum value ofK is indicated by a
minimum Lyapunov exponent. Note, however, that a ne
tive Lyapunov exponent alone is not sufficient for success
control of a UPO since it might also be due to an artificia
induced limit cycle which exists only with a nonvanishin
control signal as, e.g., shown in Fig. 5 for theK-range above
Kmax. It is the result of unintentional synchronization of th
system with the control signal giving rise to a limit cycle
periodQÞt that is not a UPO of the chaotic attractor.

By iterating the procedure described above an optim
choice of botht andK can be obtained although this may b
quite cumbersome due to the extremely sharp resonanc
t. Empirical schemes to improve the estimate of the de
time by a self-adaptive control have been suggested for
cial cases@42#. A very promising technique to extrapola
the unknown UPO periodT on the basis of repeated app
cation of an analytical approximation formula was recen
proposed for chaos control in ordinary differential equatio
by Justet al. @14#. If the delay timet and the UPO periodT
do not coincide the system responds with a periodic signa
periodQ for not too large delay mismatch. An expansion
terms of the delay mismatcht2T yields

Q~K,t!5T1
K

K2k
~t2T!1O„~t2T!2

…. ~6!

Q depends on the control parametersK,t and on a system
parameterk and obeys the constraintQ(K,t5T)5T. The
parameterk comprises all details about the coupling of t
v
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-
l

l
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y
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s
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control force and is unknown, as is the UPO periodT. It is
therefore sufficient to determineQ for two sets of parameter
K,t. ThenT andk can be computed from the system of tw
nonlinear Eqs.~6! using Newton’s method. In the next itera
tion we use the computed approximation ofT as new delayt
in the subsequent simulation. Again we expect the system
synchronize with a new periodQ. Using this set of data and
the better of the two initial guesses we can again solve
system~6! and thus obtain a better approximation ofT. The
algorithm therefore opens up the possibility of a recurs
approximation of the unknown UPO periodT. We have ap-
plied the above procedure to our system exhibiting s
tiotemporal chaos. For the bifurcation parameterj 051.262
~cf. Figs. 4 and 5!, K50.0006 and initial guesses of th
unknown periodt1

(0)5500 andt2
(0)51200 we have deter

minedQ and numerically solved Eq.~6! for T(1) . After only

FIG. 4. Mean asymptotic control signal^uju& t as a function of
the delay timet for j 051.262 and fixedK50.000 479~TDAS!. For
each value oft the control signaluju has been averaged over the la
20 000 time steps of a simulation of 23105 time units. The other
numerical parameters are as in Fig. 1.
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5430 PRE 60G. FRANCESCHINI, S. BOSE, AND E. SCHO¨ LL
four simulations with different values oft and three itera-
tions of Eq.~6! we obtain the UPO periodT(3)'983.2. In
spite of the large initial delay mismatch this result is in e
cellent agreement with the true UPO periodT5985.9 ~the
relative deviation is less than 0.3%! and is reproducible for
even worse initial guesses and other values ofj 0 . This indi-
cates that the algorithm is very robust and efficient not o
for purely temporal chaos but also for high-dimensional s
tems.

IV. BIFURCATIONS AT THE BOUNDARY
OF THE DOMAIN OF CONTROL

Once we have adjusted the delay timet to the UPO pe-
riod T we can vary the control amplitudeK in a whole inter-
val (Kmin ,Kmax) and still achieve control of the UPO. Thi
domain of control is characterized by a vanishing cont
signal ~and thus bŷ uju& t50) and by a negative Lyapuno
exponentl(K) ~Fig. 5!. At the lower boundary of this
K-domain the stabilized orbit decays via a period doubl
bifurcation ~‘‘flip instability’’ corresponding to a torsion of
nearby orbits byp during one cycle! while at the upper
boundary a Hopf bifurcation occurs@16,15#. The Hopf bifur-
cation adds an incommensurate frequency to the stabil
UPO limit cycle and thus gives rise to a two-torus preced
the onset of chaos via quasiperiodicity.

Figure 6 presents an overview of the bifurcations w

FIG. 5. Largest nonzero Lyapunov exponentl ~solid line! and
mean asymptotic control signal^uju& t ~dotted line! as a function of
the control amplitudeK for j 051.262 and fixedt5985.9~TDAS!.
Optimal control (Kopt) is achieved when the control signal vanish
and l(K) reaches its minimum.Kmin and Kmax mark the bound-
aries of the domain of control. For each value ofK the control
signal uju has been averaged over the last 20 000 time steps
simulation of 23105 time units. The other numerical paramete
are as in Fig. 1.
-

y
-

l
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respect toK. For small values ofK we find chaotic behavior
characterized by a positive Lyapunov exponent and a non
nishing control signal, as expected for too weak control.
we increaseK, an inverse period doubling cascade sets
which finally leads to the stabilized UPO in the domain
control @point ~a!#. At each period doubling bifurcation th
Lyapunov exponent vanishes@43#. In the period doubling
regime the control signal remains positive. Within the d
main of control optimal stabilization is achieved atK
5Kopt , where the negative Lyapunov exponentl(K) is
minimum @point ~b!#. Further increase ofK leads to a Hopf
bifurcation associated with a rise of the control signal^uju& t
to slightly positive values at the upper boundary of the co
trol domain@point ~c!# followed by a sharp increase as cha
sets on@point ~d!#. The Lyapunov exponentl becomes zero
at the Hopf bifurcation as a signature of the two-torus, wh
possesses two vanishing Lyapunov exponents~note that a
second Lyapunov exponent is zero throughout the wh
range ofK!, and jumps to positive values only as chaos o
curs. For very large control amplitude the controlled varia
a is driven too hard and decouples from the other variab
therefore the control of UPOs fails.

Figure 7 presents simulations for the points~a!–~d! of Fig.
6. Figures 7~a! and 7~c! correspond approximately to th
respective bifurcation points, while Fig. 7~b! represents the
stabilized reference UPO atK5Kopt , and Fig. 7~d! shows
the onset of chaos just above the Hopf bifurcation. T
power spectra in Figs. 7~a! and 7~c! clearly reveal the ap-
pearance of the subharmonic frequency and the higher
commensurate frequency associated with period doub
and Hopf bifurcation, respectively~marked by arrows!. The

a

FIG. 6. Same as Fig. 5 forj 051.302, t5732.4, R50.2, N
58. The following values ofK are marked:~a! Period doubling
bifurcation ~flip instability!, ~b! optimal UPO control,~c! Hopf in-
stability ~torus!, ~d! onset of chaos. For each value ofK the control
signal uju has been averaged over the last 20 000 time steps
simulation of 23105 time units.
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FIG. 7. Control signale(t), phase portraits~u,^ j &), and power spectrum ofu(t) for different values of the control amplitudeK marked
in Fig. 6.~a! Period-doubling~flip instability! at the lower boundary of the control regime,~b! reference UPO at optimumK5Kopt , ~c! Hopf
instability at the upper boundary of the control regime,~d! onset of chaos beyond the Hopf bifurcation via intermittency: quasiperiodic~black
lines! and chaotic~gray lines! spiking oscillations alternate. The arrows in~a! and~c! indicate the additional frequencies with respect to~b!.
Parameters:j 051.302,t5732.4,R50.2, N58, ~a! K50.000 54,~b! K50.000 56,~c! K50.000 834,~d! K50.000 838.
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onset of chaos in Fig. 7~d! shows intermittent behavio
where the dynamics seems to oscillate between the two-t
and the chaotic attractor. Both dynamic states are plo
separately in the phase portrait and in the power spectru

For different parametersj 0 we have also observed mor
complex bifurcation scenarios. In Fig. 5, e.g., the Hopf
furcation is concealed by a regime where a synchroni
limit cycle ~negative Lyapunov exponent! is enforced by the
control (̂ uju& tÞ0). A closer inspection shows that at least
some range ofK.Kmax bistability between the forced limi
cycle and a controlled UPO occurs, depending upon the
tial conditions. This can be understood by noting that
basin of attraction of the controlled UPO becomes smalle
the boundaries of the control domain are approached.
us
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-
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V. PATTERN SELECTION BY SPATIAL FILTERING

Up to now we have only considered a spatially homog
neous feedbacke(t) at every point of the distributed system
The idea of using a spatially inhomogeneous feedback ar
from the observation that in the uncontrolled system th
exist various locally stable or even unstable spatially inh
mogeneous modes, e.g., spiking current filaments locate
the center of the sample, but these are only observed
special initial conditions. Note that in the absence of cont
a random initial distribution always gives rise to a~spiking!
filament, which is pinned to the boundary@cf., e.g., Fig.
8~a!#; this dominant spatial mode results from the attract
exerted upon filaments by Neumann boundary conditi
@44#. By tailoring appropriate spatiotemporal control signa
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FIG. 8. Suppression of the dominant spat
mode in favor of an unstable one by spatial fi
tering. In ~a!–~c! the spatiotemporal distribution
of the current densityj (x,t) is plotted for differ-
ent time regimes.~a! Asymmetric spiking fila-
ment at the boundary, induced by random initi
conditions.~b! Transient regime of coexistence o
both spiking modes after control is switched on
t52000. ~c! Symmetric spiking mode prevails
over the asymmetric one and forms th
asymptotic pattern.~d! Control signale(t), ~e!
phase portrait of the stabilized limit cycle corre
sponding to ~c!. Parameters: j 051.262, K
50.0002,R50, t5985.5, asymptotic period o
the response signalQ5778.3. The other numeri-
cal parameters are as in Fig. 1.
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e(x,t) which resemble the spatial profile of the desir
modes one can expect to stabilize some of them from
dom initial conditions. Thus, chaos control in spatiotempo
systems could be used for pattern selection that open
promising applications as distributed semiconductor mem
devices and neural networks.

We illustrate this idea for a spatial modej (x,t) whose
profile is symmetric and exhibits a peak~spike! at the center
of the sample. This mode is unstable and can only be
served if the initial distribution ofj (x,t) is perfectly sym-
metric and the system is noise-free. In order to stabilize
symmetric spiking mode we apply a spatially modulat
control signale inhom(x,t), which favors the considered sym
metry and can be constructed from the homogeneous co
signale(t) in the following way:

e inhom(x,t)5e(t)F12
1

2
cos S 2p

Lx
xD G

~7!

e~ t ![K@^a&~ t2t!2^a&~ t !#.

Figure 8 shows the results of a simulation with this spatia
inhomogeneous feedback control. For random initial con
tions the dominant spatial mode is always given by a cha
cally spiking profile j (x,t) with the spike located at the
boundary@Fig. 8~a!#. After control is switched on, there is
transition period in which the dominant mode~favored by
the boundary conditions! coexists with the symmetric mod
~favored by the control signal! @Fig. 8~b!#. Finally the sym-
metric mode wins and the corresponding orbit is stabiliz
asymptotically@Fig. 8~c!#. The phase portrait in Fig. 8~e!
suggests that the controlled orbit is periodic though no
UPO of the chaotic attractor since the control signale(t)
does not vanish after some transient time@Fig. 8~d!#. Thus,
the period of the stabilized limit cycleQ does not coincide
with the delay timet. Nevertheless, we stress that by mea
of a weak perturbation we have succeeded in suppressin
dominantspatial mode in favor of an unstable one and
replace thetemporallychaotic sequence of spikes by a pe
odic sequence.
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VI. DISCUSSION

A rough estimate of the efficiency of the ETDAS schem
for temporal chaos in ordinary differential equations h
been given by Just@16,15#: Only those UPOs can be stab
lized that obey the constraint

lt<2
11R

12R
. ~8!

Thus, the simple TDAS scheme (R50) is expected to be
able to stabilize UPOs whose product of the Lyapunov
ponentl and the periodt does not exceed 2. In practice w
have been able to control UPOs in our spatially extend
system with global feedback only for lower values.

Empirically we found that both TDAS and ETDAS wor
successfully for UPOs withlt &1.2. If on the other hand
lt.1.2, the TDAS scheme starts to fail while ETDAS st
works successfully if the Lyapunov exponent of the unco
trolled system is not too large. The best results we obtai
were the stabilization of a high period UPO with a sm
Lyapunov exponent for j 051.262 (l54.831024,
t53909.5 and thuslt '1.9! and of a highly unstable UPO
for j 051.305 (l52.5831023,t5730.3,lt'1.9). Both or-
bits could only be controlled with ETDAS.

In parameter regions where the largest Lyapunov ex
nent is greater than 2.431023 ~i.e., 1.309< j 0<1.314) we
have not been able to stabilize any UPO at all, althou
we extrapolate periods of the order oft'700, and~if the
Lyapunov exponent of the UPO and of the uncontrolled s
tem do not differ significantly! lt ,2 would still hold. This
could possibly be improved by making use of a techniq
developed by Zoldi to calculate UPOs explicitly using
damped-Newton method@45#. We suggest that it might be
possible to stabilize some of these UPOs by means of m
sophisticated control techniques, e.g., with a spatially filte
control signal.

Figure 9 summarizes our empirical findings for differe
values ofl andt by showing the domains of control in th
diagram of^uju& t as a function ofK for different ETDAS
realizations. The control domain comprises all values oK
for which ^uju& t vanishes. In Fig. 9~a!, e.g., we havel
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56.231024, t51949.2 for the period-2 UPO, and thuslt
'1.2. For this uncritical value oflt both the TDAS (R
50) and the ETDAS (R.0) scheme work in a finite
K-interval, as is evident from the vanishing control signal
should be noted that with increasingR the control domain is
shifted to larger values ofK and becomes wider, in goo
agreement with the theoretical predictions for temporal ch
@16#. For the period-4 UPO at the same value ofj 0 @Fig.
9~b!# lt '1.9, and control has no longer been achieved

FIG. 9. Domains of control for different values oflt and R.
UPO stabilization is achieved if the mean control signal^uju& t van-
ishes in some interval ofK. ~a! j 051.262, t51949.9 ~period-2!,
lt '1.2. ~b! j 051.262, t53909.5 ~period-4!, lt '1.9 ~c! j 0

51.302, t5732.4 ~period-1!, lt '1.4. For each value ofK the
control signaluju has been averaged over the last 20 000 time s
of a simulation of 23105 time units. The other numerical param
eters are as in Fig. 1.
t

s

y

the TDAS scheme (R50), while the ETDAS scheme with
R.0 still works, although large fluctuations in̂uju& t are
present. They are a result of the shrinking attractor ba
which prevents stabilization for some realizations of the r
dom initial conditions, even though forR50.2, e.g., the the-
oretical limit of lt53 is by far not reached. In Fig. 9~c! we
consider a UPO withlt '1.4 for a different bifurcation pa-
rameter j 0; here the Lyapunov exponent is larger (l
51.8831023) and the simple TDAS scheme does not allo
stabilization even of the period-1 UPO. On the other ha
there is still a large control domain for the feedback schem
with longer memory (R.0), and the small shift of the lowe
stability boundary~flip instability! and the stronger shift o
the upper stability boundary~Hopf instability! with increas-
ing R agrees well with the theoretical predictions@16#.

In conclusion, we have been able to demonstrate th
variety of spatiotemporal UPOs embedded in a chaotic
tractor of a distributed system can be stabilized using
extended time-delay autosynchronization algorithm. Th
UPOs correspond to spiking current filaments. We have c
cally evaluated numerical techniques and analytical appr
mations originally developed fortemporalchaos@14,16# and
found that a number of properties of chaos control in lo
dimensional temporal systems carry over to thespatiotempo-
rally chaotic reaction-diffusion system. We have confirm
that the delay time of global time-delayed feedback con
~which is adjusted to the UPO periodT! can be extrapolated
with high accuracy from the periodic response of the syste
We have also gained insight into the mechanism of s
tiotemporal chaos control by analyzing the bifurcations at
boundaries of the control domain. While the gross featu
agree with the case of temporal chaos, we have foun
higher sensitivity to noise which appears to be due to sma
attractor basins and multistability of the spatiotemporal p
terns associated with the larger number of degrees of f
dom. The theoretical limit for the control of temporal UPO
which is given bylt<2 for the Pyragas feedback, and b
lt<2(11R)/(12R) for the extended time-delay autosyn
chronization scheme, has not been reached in our sim
tions. Further analytical and numerical work is necessary
explore the limits of control for spatiotemporal system
Nevertheless, the ETDAS scheme represents a signifi
improvement of the simple Pyragas feedback. If the glo
feedback is modified by a spatial filter, we can achieve p
tern selection and stabilization of otherwise unstable spa
modes corresponding to different locations of the spik
within the sample.

Our findings offer promising potential applications sin
the feedback can be readily realized for our distribu
bistable semiconductor system by gate control circuits. Th
it should be possible to build stable, tunable microwave
cillators on that principle.
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@34# E. Schöll, F.-J. Niedernostheide, J. Parisi, W. Prettl, and
Purwins, inEvolution of Spontaneous Structures in Dissipati
Continuous Systems, edited by F. H. Busse and S. C. Mu¨ller
~Springer, Berlin, 1998!, pp. 446–494.

@35# A. Wacker and E. Scho¨ll, Semicond. Sci. Technol.9, 592
~1994!.

@36# S. Bose, A. Wacker, and E. Scho¨ll, Phys. Lett. A 195, 144
~1994!.

@37# F.-J. Niedernostheide, H. Schulze, S. Bose, A. Wacker, an
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